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ABSTRACT

A one-dimensional (1D) analysis problem is defined and analyzed to explore the interaction of observation

thinning or superobservation with observation errors that are correlated or systematic. The general formu-

lation might be applied to a 1D analysis of radiance or radio occultation observations in order to develop a

strategy for the use of such data in a full data assimilation system, but is applied here to a simple analysis

problem with parameterized error covariances. Findings for the simple problem include the following. For a

variational analysis method that includes an estimate of the full observation error covariances, the analysis is

more sensitive to variations in the estimated background and observation error standard deviations than to

variations in the corresponding correlation length scales. Furthermore, if everything else is fixed, the analysis

error increases with decreasing true background error correlation length scale and with increasing true ob-

servation error correlation length scale. For a weighted least squares analysis method that assumes the ob-

servation errors are uncorrelated, best results are obtained for some degree of thinning and/or tuning of the

weights. Without tuning, the best strategy is superobservation with a spacing approximately equal to the

observation error correlation length scale.

1. Introduction

Weather forecasts depend on the accuracy of initial

state estimates. A data assimilation (DA) system esti-

mates the initial state or analysis by combining all recent

observations with a prior estimate called the back-

ground (Kalnay 2002). The background is the analysis

from the previous DA cycle propagated to the current

time by a numerical model. Therefore, analyses of the

initial state depend on the accuracy of the numerical

model and of the characterization and specification of

background and observation errors. In reality, back-

ground and observation errors are complex. Further,

within the DA context, estimated observation errors

include contributions from instrument error due to

noise, systematic errors, and biases; representativeness

error due to scales not included in the DA system; and

simulation error due to inaccuracies in interpolation and

in the calculation of the sensor response. Much progress

has been made in using ensembles to estimate back-

ground errors, however, in practical DA systems,

observation error characterizations are often simplifi-

cations. Current DA systems often treat the observation

errors as uncorrelated and employ some combination of

thinning the observations (i.e., using a subset of avail-

able observations; e.g., Dando et al. 2007), creating su-

perobservations (i.e., averaging subsets of available

observations; e.g., Benjamin 1989), and tuning the esti-

mated observation error standard deviations or obser-

vation weights (e.g., Li et al. 2009). These methods are

suboptimal, but the impacts on analysis errors can be

mitigated with careful tuning. However, the ‘‘optimal’’

tuning for one data sample may not be optimal for an-

other since the true error statistics vary in space and time.

A number of authors have described various ap-

proaches to thinning, including Purser et al. (2000),

Ochotta et al. (2005), Ramachandran et al. (2005), and

Lazarus et al. (2010), and its impact on DA, including

Dando et al. (2007), Li et al. (2010), and Miyoshi and

Kunii (2012). Liu and Rabier (2002) reported on ideal-

ized data analyses in a one-dimensional (1D) periodic

domain and compared optimal and suboptimal schemes

and demonstrated that thinning is justified when obser-

vation error correlations are neglected. Liu and Rabier

(2003) extended this work to a much more realistic
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system. As a rule of thumb, they found that the optimal

thinning reduced the maximum remaining error corre-

lations to about 0.15–0.20. These studies and an earlier

study by Bergman and Bonner (1976) showed there is

little to gain from decreasing the spacing of observations

to be much less than the correlation length scale, even if

the correct observation covariances are used.

The use of estimates of vertical or interchannel ob-

servation correlations is now commonplace (e.g., Bauer

et al. 2011; Campbell et al. 2017). However, estimates

and implementations of horizontal observation error

correlations have been lacking. This is now changing.

For example, to allow more data to be used in the DA

system, Waller et al. (2016) diagnose observation error

correlations of Doppler radar radial winds following the

approach of Desroziers et al. (2005). Other similar ef-

forts include those of Nakabayashi andUeno (2017) and

Hotta et al. (2017). Since including a nondiagonal ob-

servation covariance matrix R entails a higher compu-

tation cost, especially when assimilating high-density

satellite observations, Abdelnur Ruggiero et al. (2016)

developed a method that requires only a block diagonal

error correlation matrix by augmenting the observation

vector with spatial derivatives of the observations.

In addition to higher computational costs, a full

matrix R also introduces the complication that typical

observation error covariances often result in ill-

conditioned system of equations. Therefore, R must

be accurately estimated. However, there are funda-

mental limits when estimating error statistics related to

sample size and the fact that the differences available

to be used in the estimation process combine errors

from all sources (Todling 2015a). As a result, 1) errors

can only be estimated in some (quasi) homogeneous

sense and/or for situations that are well observed and 2)

estimating one component of error requires assuming

knowledge of the other components (Todling 2015b).

Consequently, in practice, an excellent global estimate

of an observation error covariance matrix may perform

poorly for specific locations and times where the true

error statistics differ from the overall statistics. For

similar reasons, the optimal degree of thinning or su-

perobservation and the optimal values for the obser-

vation weights actually vary in space and time.

Therefore, several authors note that thinning should be

adaptive. For example, Dando et al. (2007) state that

‘‘localized regions of the atmosphere containing large

gradients such as frontal regions may benefit from

[smaller] thinning distances . . .and therefore the global

optimal separation distance is not necessarily applicable

in these circumstances.’’ Examples of such ‘‘intelligent’’

data selection include a tool for dynamically optimizing

the thinning of satellite data (Zhu and Boukabara 2015)

and an efficient thinning method based on support vector

regression (Richman et al. 2015).

All studies of the impacts of the various accommoda-

tions that make DA systems practical have limitations

and caveats. In different realistic cases, different re-

searchers have reported that different thinning or

superobservations strategies are optimal for a particular

problem. Comparisons across studies are hindered when

the impacts due to one factor (e.g., thinning) are exam-

ined in one case and the impacts due to a second factor

(e.g., observation error inflation) are examined in another

case. The present study also has limitations. However,

unlike the previously cited studies, the expected analysis

error is directly calculated instead of estimated from a

finite sample. It is common to calculate the expected

analysis error under the assumption that the statistics

used are correct, but it is likewise possible, as will be

shown, to calculate the expected analysis error when the

statistics used are incorrect. This approach enables a

more comprehensive exploration of the effects of thin-

ning and superobservation as the true and estimated error

statistics vary. In this study, different thinning and

superobservation methods are compared for varying de-

grees of thinning or superobservation for cases in which

the estimated error characteristics are incorrect. Both

correlated and systematic errors are considered. Sys-

tematic errorsmayoccurwhen some relevant geophysical

phenomena are not included in the observation simula-

tion or when there are slowly varying observing system

errors. Systematic errors are often termed biases (Dee

2005), but the systematic errors considered here have an

expectation of zero and will not be referred to as biases.

Two methods are considered: a variational analysis

method that includes a full observation error covariance

matrixR and a weighted least squares analysis method in

which it is assumed that R is diagonal. The effect of var-

iations in both R and the diagonal weight matrix are ex-

amined. The approach is general and might be applied to

arbitrary geometries and observation operators. How-

ever, examples presented are 1D and the observation

operator is the simplest possible since the observation

vector is a subset of the analysis vector.

The plan of this paper is the following. Section 2

presents the mathematical methodology employed. In

section 2a, the expected errors of a variational analysis

are determined under general conditions, assuming only

that the background and observation errors are in-

dependent. Indeed, it is assumed that the background

and observation error covariances are not correctly

specified. In section 2b, the error covariance matrices

are parameterized in terms of a small number of pa-

rameters, including the magnitude of random, corre-

lated, and constant error components. All correlations
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are based on a Gaussian hill shape, specified in terms of

an e-folding length scale. Section 2c extends the results

of sections 2a and 2b to the superobservation case.

Section 2d presents the diagonal version of R in the

weighted least squares analysis method where observa-

tion errors are assumed to be uncorrelated, but the ob-

servation weights are tuned. The methodology is then

applied to a very simple 1D univariate analysis problem

(section 3). In the geometry of this problem the analysis

locations are identical to the original (i.e., before thin-

ning or superobservation) observation locations (section

3a). Then, the various observing networks (ONs; section

3b) are realized by very simple observation operators

(section 3c). Section 4 presents some sample results, first

for the variational analysis method (section 4a) and then

for the weighted least squares analysis method (section

4b). Finally, a discussion of the results and concluding

remarks are given in section 5.

2. Methodology

a. Expected errors of variational analysis

The variational analysis xa is the x that minimizes the

functional

J(x)5 dxT B21 dx1 dyT R21 dy . (1)

Here,B is the estimated background error covariance,R

is the estimated observation error covariance, and

dx5 x2 xb 5 ea 2 eb ,

dy5 yo 2
�
H (xb)1H(x2 xb)

�
5 eo 2H ea , (2)

where x is the state, xb is the background, yo is the ob-

servation vector, e is the error, H is the observation

operator, and H is its linearization. Here, the observa-

tion error eo includes both instrument and representa-

tiveness errors. (See the appendix for details.) There are

N analysis locations in x and n observations in y. The ith

observation is denoted yi.
1 An assumption is often made

in deriving Eq. (1) that the background and observation

errors are Gaussian, or have been transformed to be

Gaussian (e.g., Beal et al. 2010).

As shown in the appendix, the expected analysis error

covariance matrix is given by

Â5GB̂GT 1KR̂KT 5 Âb 1 Âo , (3)

where

K5BHT(R1HBHT)21 (4)

and

G5 I2KH . (5)

The matrices K and G are the Kalman filter gain and

covariance update matrices. Equation (3) defines the

background and observation components of Â (denoted

by superscripts b and o) due to the true background and

observation covariances, B̂ and R̂, respectively.2 The

diagonal of Â, denoted DA, is the expected analysis error

variance at the analysis locations. The average trace of

Â and its components are the total, background, and

observation MSEs, defined by

«
A
5 tr(Â)/N5 tr(Âb)/N1 tr(Âo)/N5 «bA 1 «oA . (6)

A numerical recipe to determine Â given R, B, H, R̂,

and B̂ that requires only a single matrix inverse, first

calculates K from Eq. (4) and G from Eq. (5), and then

obtains Â from Eq. (3). For a fixed ON and estimated

statistics, K and H are fixed. When this holds, if the true

background (observation) covariance is changed, then

only the background (observation) components of Â,

DA, and «A will change.

b. Parameterized error covariances

To make use of the formulation of section 2a requires

the specification of B, R, H, B̂, and R̂. Specification of H

for thinning and superobservation is provided in section

3c. This section defines a generic parameterization of a

covariance matrix P that can be used to create all four of

the needed covariance matrices.

To specify a particularmodel for the errors that allows

the calculation of P from a handful of parameters, it

is assumed that e is composed of three additive in-

dependent error sources according to

e5 q1 r1 e
c
j . (7)

The uncorrelated error component q is a multivariate

random variable with zero mean and covariance s2
qI.

The correlated error component r is a multivariate

random variable with zero mean, constant variance s2
r ,

and correlation

r
ij
5 e2D2

ij
/l2 , (8)

1 This typographical convention is used for elements of other

vectors and matrices.

2 The term covariance matrix is used throughout this paper.

However, no assumption was made that the errors are unbiased.

Therefore, it would bemore correct to use the term expected cross-

product matrix for B̂ or R̂.
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where Dij is the distance from location i to location j and

l is the correlation length scale. The systematic error com-

ponent ec j is a ‘‘constant’’ that is added to all observations

for each specific realization. Here, ec is a scalar random

variable with zeromean and variance s2
c , and j is a vector of

ones. Since the three components are independent,

P5 he eTi
5 hqqTi1 hrrTi1 he2cijjT
5s2

qI1s2
rr1s2

cJ . (9)

Here, J is a matrix of ones. Thus, P is defined once the

Dij are calculated and the parameters sq, sr, sc, and

l are specified. In what follows each of these parameters

may have a superscript b or o to indicate background or

observation and a hat accent to indicate true as opposed

to estimated. Note that the uncorrelated and systematic

error components may be considered additional (but

independent) correlated error components with zero

and infinite correlation length scales, respectively.

c. Superobservations

Superobservations (aka superobs) are simple aver-

ages of the observations. The location of a super-

observation is the mean of the locations of the original

observations that were averaged. To specify a method to

create superobservations, for each of the n super-

observations, yi, give a list Ki of the indices k of the

original observations y0k in the ith superobservation. Let

n0 be the number of original observations and let mi be

the number of indices in Ki. (The thinning case may be

considered a specialization of the superobservation case

where mi 5 1.) With Ki given, the superobservation av-

erage can be written as

y
i
5

1

m
i

�
k2Ki

y0k , (10)

where the notation indicates that the sum is over the k

in the list Ki. The superobservation average applies to

the location, observed value, and observation error.3

Equation (10) can be written inmatrix–vector notation as

y5Sy0 . (11)

Here, S is the selection or superobservation matrix. For

the thinning case S is just an indicator matrix that is all

zeros, except that in the ith row the kth entry is 1, where

yoi is taken to be the kth original observation. For the

superobservation case, S is a normalized indicator ma-

trix that is all zeros, except that in the ith row the mi

entries given by Ki are equal to 1/mi. In other words the

superobservation operator for yoi is used to select the

original observations for k in Ki and average them.

All of the developments of section 2a apply equally to

observations or superobservations. Given a set of orig-

inal observations y0 andKi, the above description allows

the calculation ofmi. Then, the observations y
o and their

locations are determined from Eq. (10) or (11). In some

usages, the observation operator for superobservations

is the same as the observation operator for a single

original observation. However, small scales present in

reality are filtered by the superobservation averaging,

and an alternative is to include this averaging in the

observation operator so that small scales in the back-

ground are similarly filtered. This alternative approach

is used in the examples presented below. All that re-

mains is to determine the error covariance matrices for

the superobservations from the error covariance matrix

of the original observations. Let P denote either R or R̂

and let P0 denote the corresponding original covariance

matrix. Then, elements of P are simply averages of all

elements of P0 that correspond to the original observa-

tions averaged over because the superobservation errors

are formed from the original observation errors ac-

cording to Eq. (10); that is,

P
ij
5 he

i
e
j
i

5
1

m
i

1

m
j

�
k2Ki

�
l2Kj

he0k e0li .

5
1

m
i

1

m
j

�
k2Ki

�
l2Kj

P0
kl

(12)

Equivalently,

P5 he eTi5She0 e0TiST 5SP0ST . (13)

d. Weighted least squares

In practice, and in the examples that follow, it is often

assumed that the observation errors are uncorrelated

and unbiased. In that case,R is diagonal and it is possible

to write Eq. (1) as

J(x)5 dxT B21 dx1 �
n

i

w
i

�
yoi 2H

i
(x)

�2

s2
o

, (14)

where s2
o is the estimated variance of the observation

errors and the wi are ad hoc or tuning weights. If the

observation errors are in fact uncorrelated and unbiased3 This assumes that the observation errors are additive.
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with standard deviation ŝo
q 5so, then the optimal choice

of weights is wi 5 1. But if the observation error charac-

teristics are different, then other values of the wi will be

optimal. Also, in cases where the observations are su-

perobservations of varying numbers (mi) of original ob-

servations with observation errors that are uncorrelated

and unbiased with standard deviation ŝo
q 5so, then

wi 5mi will be optimal weights. Equation (14) is equiv-

alent to Eq. (1) with

R5s2
oW

21 , (15)

where W is a diagonal matrix with the wi along the

diagonal.

3. A simple 1D data analysis problem

While section 2 is fairly general, a simple 1D data

analysis problem is now defined that is appropriate for

investigating the impact of thinning and superobservation

when the error statistics are misspecified. In this setup,

the analysis variables and the observations before thin-

ning or superobservation are identical. That is, the loca-

tions are the same and the physical quantity analyzed and

observed is the same (e.g., temperature). As a conse-

quence, n0 5N and the observation operator for the

original observations is the identity matrix. The analysis

locations are denoted hi, which could be the height above

the ground, or the log of pressure, or the distance along a

horizontal line. In the discussion that follows h is taken to

be the horizontal distance across a swath of satellite ob-

servations relative to the center of the swath, but the re-

sultsmay be applied to other domainswith the caveat that

the correlations depend only on distance and not location

within the domain according to Eq. (8). The background

and observation, estimated, and true errors are all po-

tentially of the form of Eq. (7): the sum of random un-

correlated, random correlated, and systematic error

components, all independent of each other and the

background. However, the solution of the analysis prob-

lem may assume different values for the parameters de-

fining the error statistics. The examples in section 4b use

the weighted least squares approach [R is given by

Eq. (15)].

The simple 1D analysis problem may be usefully ex-

tended with relatively small changes. First, if h is a vertical

dimension such as the logarithm of pressure, this 1D

problem is of interest for testing thinning/superobservation

strategies for assimilating temperature profiles retrieved

from radiance or radio occultationmeasurements. Second,

the analysis could be extended to radiances or bending

angles by using an appropriate observation function. Third,

to extend the 1D analysis problem to higher dimensions,

it is only necessary to formulate the thinning and su-

perobservation strategies in terms of distance, appro-

priately defined.

a. Setup

To be concrete, consider a cross section through a swath

of satellite data, with y0k the original observations before

thinning or superobservation at the kth location. In the

examples in section 4, k varies from 1 at the left edge of the

satellite track to N5 n0 5 65 at the right edge with k5 33

at nadir, and h varies from 232 at the left edge to 132 at

the right edge with h5 0 at nadir. In physical units, if the

distance between adjacent observations is dh5 25 km,

then the center-to-center swath width is 1600km. Table 1

lists the parameters for the nominal case, which corre-

sponds to true and estimated background and observation

errors that are correlated, with the background correlation

length scale equal to twice the observation correlation

length scale, and with no systematic errors.

b. Observing networks

Thinning of the observations keeps every mth loca-

tion. Patterns of superobservations average every m

observations. The parameterm is the degree of thinning

or superobservation. The thinning and superobservation

ONs that will be used in the examples are plotted in

Fig. 1.

d The ‘‘odd’’ thinned ONs include the central location

and then every m location in both directions, for m

odd. The locations for the odd thinned and super-

observation ONs of the same degree are identical.

(Compare the ochre4 and black locations in Fig. 1.) In

the odd superobservation ONs the superobservation

averages are over the m original observations closest

to each superobservation location. In what follows,

only values of m that are factors of 63 are used, the

edge locations (mint locations in Fig. 1) are not used,

and each odd superobservations ON is based on the

remaining 63 original observations

TABLE 1. Nominal parameter values used in Eqs. (8) and (9). See

the text for the definition of the symbols.

P sq sr sc l

B 0 1 0 16

R 0.1 1 0 8

B̂ 0 1 0 16

R̂ 0.1 1 0 8

4 Colors are from the Dark2 color-blind safe palette of Color-

Brewer: mint, ochre, lavender, magenta, lime, gold, and brown.
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d The ‘‘hybrid’’ thinned and superobservation ONs are

identical to the corresponding odd ONs but add the

edge locations (mint locations in Fig. 1). These ad hoc

hybrid ONs are motivated by a desire to retain in-

formation for the full range of h.However, the hybrid

superobservation ONs have the additional complexity

that these are mixtures of superobservations and

original observations and that the original observation

locations skipped between the edge location and next

location are only half of the usual number [(m2 1)/2

instead of (m2 1)]. In the nominal case the weight

given to edge locations is 1 and the weight given to the

superobservation locations is m.

Since analyses depend strongly on the locations of the

observation, these ONs are designed so that some char-

acteristics of the ONs are fixed in certain comparisons.

Examples of this include the following. Observation lo-

cations are the same for thinned and superobservation

ONs of the same degree. A pair of similar odd and hybrid

ONs differ only in that the edge locations are included in

the hybrid ON. Superobservation ONs of different de-

grees include the same set of original observations.

c. Observation operators

The observation operators for the setup and ONs

considered here are extremely simple. Since the ob-

served and analyzed quantity are identical and since

the original observation locations are the same as the

analysis locations, the observation operator is equal to

the selection/superobservation operator (i.e., H5S).

In other words the observation operator for yoi is to

select the analysis values xak for k in Ki and average

them. (See section 2c.)

d. Numerical solution

Determining the MSE requires inverting the matrix

C5R1HBHT in Eq. (4). This matrix can be poorly

conditioned or even numerically singular. In the results

presented in section 4, so
q 5 0:1. This adds a ridge to R of

0.01 and tends to stabilize the solution. However, in some

cases, especially form5 1 and 3, this is not sufficient and a

generalized inverse is used in all calculations. To avoid

anomalous behavior, a maximum condition number of 100

is enforced. Typically, the leading 10 or so singular vectors

are retained, which account for more than 99% of the

original variance. For example, for the nominal case and

them5 1 oddON, 10 singular vectors (out of 63) are kept,

but only 0.9% of the original variance is removed.

4. Results

a. Sensitivity of analysis error to misspecification of
uncertainty

When the specified background and observation co-

variances are correct, xa is the optimal analysis (OA) and

the expected MSE calculated from Eq. (6) will be mini-

mized. Since it is impossible to know the truth, it is like-

wise impossible to know the errors exactly. As a result,

the variational analysis specification of the covariances

will never be perfect. To examine the impact on the

analysis error when this happens, Fig. 2 plots the expected

analysis error as the estimated statistic parameters de-

finingB andR are varied.Note that the y axes in Fig. 2 are

identical and that the x axes are identical for each pa-

rameter normalized by its true value. The left panels in

Fig. 2 examine what happens if the estimated standard

deviations are misspecified by varying sb
r and so

r about

their nominal value (of 1) for the oddONs. Increasing the

degree m results in increasing MSE. Superobservation is

an improvement compared to thinning, but this im-

provement is small for all cases except for m5 21 since

the superobservation average is over distances approxi-

mately equal to or smaller than the observation error

correlation length scale. For m5 1, the analysis is iden-

tical for thinning and superobservation, but MSE in-

creases faster for thinning than superobservation as m

increases. The extreme of m5 21 is substantially worse

than other choices. Here and in what follows, the impact

of m on superobservation results is muted because the

superobservation process retains all the information in

the original observation and filters the errors. These

findings are consistent with the theoretical conclusions of

Xu (2011) for uniformly distributed observations and

with the numerical results of Xu andWei (2011) for radar

observations of radial velocity. Since Eq. (10) applies to

errors, this filtering of errors works best for uncorrelated

FIG. 1. Thinning and superobservation ONs used in the exam-

ples. The superobservation locations are shown by large ochre

circles and the thinned locations by black circles. Original locations

(gray or black circles) contributing to a superobservation location

are connected by lines to that superobservation. The original edge

locations added to the oddONs to create the hybridONs are shown

by mint circles. All ONs used are symmetric and all include the

central location.
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error and has no impact on systematic errors or bias. In

the superobservation case, while the same set of original

observations contribute for each m, as m increases the

ON locations collapse toward the center of the domain,

which has a negative impact on the analysis error.

Increases in the analysis error due tomisspecification of

the estimated standard deviations are large compared to

the variations in analysis error due to the degree of

thinning or superobservation (except for the casem5 21)

and due to the choice of thinning or superobservation, as

seen by the close packing of the curves in Fig. 2. Results

for varying sb
r are qualitatively similar to results for

varying so
r . The right panels in Fig. 2 are analogous to the

left panels but for varying lb and lo. The sensitivities to

percentage errors in the error correlation length scales

are half or less than those in the error standard deviations.

Another approach to examining the sensitivity of

analysis error to deficiencies in the estimated error model

is to hold the estimated error model fixed and vary the

true errors. This is of practical interest in cases where a

fixed global error model is used, but the true errors vary

in space and time. Because of the form of Eqs. (3), (6),

and (9), it is possible to consider the impact of the dif-

ferent parameters separately. Substituting Eq. (9) for the

true covariances in Eq. (3), it is clear that the variance

parameters such as ŝo2
r appear only as a multiplier of a

single term.That term is therefore the sensitivity of the «A
with respect to that variance parameter. For example,

›«
A

›ŝo2
r

5 tr Kr(l̂o)KT
� �

=N . (16)

These sensitivities are plotted in Fig. 3. Note that the

terms in Eq. (9) involvings2
q ands

2
c are equal to the term

involving s2
r for l equal to zero and ‘, respectively. The

curves in Fig. 3 are at the same time a plot of the vari-

ation of «bA and «oA with respect to l̂b and l̂o, respectively,

holding the other parameters constant. Note that for the

OA, «bA and «oA are approximately equal to 0.2. Consid-

ering the top panel, as l̂b decreases, «bA increase toO(1).

On the other hand, as l̂b increases from its nominal

value of 16, «bA decreases slightly. In contrast, in the

bottom panel in Fig. 3, as l̂o decreases, «oA decreases

slightly for the larger m for the thinned ONs and de-

creases very substantially for m5 3 and to near zero for

m5 1 and all the superobservation ONs. Finally, as l̂o

increases, «oA approximately doubles. The conclusion is

that if everything else is fixed, the analysis error de-

creases with increasing true background error correla-

tion length scale and with decreasing true observation

error correlation length scale. This matches a priori ex-

pectations based on an information content point of

view. Since the degrees of freedom decrease with in-

creasing correlation length scales, there is less in-

formation needed to correct a background with a long

correlation length scale and more information to do so

in observations with a short correlation length scale.

FIG. 2. The variational analysis MSE in the thinning case (solid lines) and in the superobservation case (dashed

lines) for the oddONs as a function of perturbing the estimated statistic parameters—(left) sr and (right) l for both

(top) B and (bottom) R—from 0.5 to 2.0 times the true values, for different values of the thinning parameter

(m, colors).
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b. Tuning the weighted least squares analysis method

With a given analysis system that may be imperfect

because of mischaracterization of the observation er-

rors, it is common to attempt to optimize performance

by tuning the observation weights or estimated obser-

vation error standard deviation, by thinning the data,

and/or by generating superobservations. In this section,

for some examples using the least squares approach, the

impact on the estimated MSE of the analysis is calcu-

lated for different degrees m of both thinning and su-

perobservation, and optimal values of the weightswi are

determined. In this section MSE is calculated using Eq.

(6) specialized with Eq. (15), andMSE isminimizedwith

respect to wi using the standard R nonlinear minimiza-

tion software nlm.

Figure 4 demonstrates the need for tuning the data

thinning, superobservation, and/or weighting for the

success of the weighted least squares analysis method.

Here, so 5 1 andwi 5mi. For reference, the OAMSE is

0.4270 for the hybrid m5 1 ON (i.e., for the best use of

all the observations) and 0.4305 for the odd m5 1 ON.

Since the optimal values of so are approximately 1.1 and

1.3 form5 9 andm5 7, if so is not tuned (so 5 1), then

simple thinning with a choice of m5 9 is best, and a

choice ofm5 7 is only a bit worse. For these choices the

spacing between thinned observations is close to the true

observation correlation length l̂o 5 8, and the closest-

neighbor correlations are 0.28 and 0.47, respectively.

Using all the observations either directly or in super-

observations without tuning of the weights yields MSE

values in excess of 0.65. This poor performance is the

result of oversampling what are essentially redundant

observations. Either thinning or inflating the estimate of

so ameliorates this poor performance. Thus, in Fig. 4 for

eachON there exists an optimal choice of so (equivalent

to an optimal choice of w) that gives an MSE of ap-

proximately 0.45. For example, all the superobservation

ONs, except for m5 21, are skillful for so in the range

of 3–4.

Three ways of tuning the weights in the weighted least

squares analysis method were tested:

w1—The wi are specified by a single weight; that is,

the weights are the same, except that in the hybrid

superobservation case the edge weights (i.e., the

weights for the observations at the edge locations)

are reduced by a factor of 1/m.

w2—The wi are specified by two weights; that is , the

edge weights vary independently of the other

locations.

wn—The wi vary independently.

Since the ONs are symmetric about h5 0, the weights

should be as well. If unconstrained, the wnminimization

finds weights that are very close to symmetric, but some

weights are found to be negative. In what follows, the

weights are constrained to be positive and symmetric by

choosing the control vector for the minimization as the

square root of the weights for h$ 0. The three ways of

tuning the weights were applied to the four ONs—odd

FIG. 4. The weighted least squares MSE in the thinning case

(solid lines) and in the superobservation case (dashed lines) for the

odd ONs as a function of perturbing the estimated observation

error—so—from 0.5 to 4.0 times the nominal value, for different

values of the thinning parameter (m, colors).

FIG. 3. The variational analysis mean square (top) background

(«bA) and (bottom) observation («oA) analysis error for the nominal

parameters in the thinning case (solid lines) and in the super-

observation case (dashed lines) for the odd ONs as a function of

perturbing the true correlation length scales—(top) l̂b and (bottom)

l̂o—for different values of the thinning parameter (m, colors).

Symbols plotted at the left and right are for l5 0 and‘, respectively.
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and hybrid, thinned, and superobservation. It is easy to

justify w2 tuning for the hybrid super-ONs. However,

since it was found in many cases, in contrast to a priori

expectations, that the optimal edge weight is larger than

for the superobservation locations, w2 tuning was ap-

plied to all ONs. Further, since in an optimal analysis

system the effective weights applied to each observation

are different, the wn tuning was also tested.

A summary of results for the optimal analysis errors

is displayed in Fig. 5 for two test cases. In the case

of correlated errors (nominal parameter values, left

panels), adding degrees of freedom in the weight tuning

(going from w1 to w2 to wn) improves the analysis ac-

curacy in general, but this improvement decreases as m

increases, except for the hybrid superobservation ONs.

Increasing m increases MSE, except for the hybrid w1

thinned ONs. In the case of systematic errors added to

uncorrelated errors (nominal parameter values except

that sq 5 1, sr 5 0, and sc 5 0:5 for R̂, right panels),

there is essentially no improvement by adding degrees of

freedom in the weight tuning, and almost all of the w2

and wn points are overplotted by the w1 points. Addi-

tional general conclusions in both cases are that the

observations at the edge locations add value, and that

superobservation generally is better than thinning. For

comparison the top panels in Fig. 5 include in lavender

the OA MSE values. The bottom panels repeat the top

panels, but without the w2 and wn results and expand

FIG. 5. The optimalMSE as a function of the degree of thinning (m) for (top) the threemethods of tuning (colors)

for the four ONs (thinned and superobservation, odd and hybrid, symbols) for (left) the nominal case (l̂o 5 8) and

(right) the case with systematic errors (ŝo
c 5 0:50). For reference, lavender lines show the OA MSE for the four

ONs. Note the difference in the y axis in the top panels. (bottom) For context, the w1 and OA results from the top

panels are repeated in the inset defined by the black horizontal lines using the same y axis and the untuned (w5 1)

MSE (gold) and the MSE are added for the case of ideal (uncorrelated and unbiased) errors (brown) for the four

ONs. In addition, a second tuning case is added in each bottom panel as a second and lower set of w1 lines

(lime)—for (left) correlated errors (l̂o 5 4) and for (right) systematic errors (ŝo
c 5 0:25).
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the vertical axis to include the weighted least squares

MSE values both without tuning of the weights (gold)

and for the case of ideal uncorrelated unbiased errors

(brown). Within this context, for correlated errors, any

of the ONs is adequate as long as it is tuned in some way,

and the tuned weighted least squares solutions are

nearly as good as the OA solutions (using a full esti-

mated covariance matrix R equal to the true covariance

matrix R̂). For systematic errors, superobservation is

better than thinning; tuning the weights adds little, but

theOA is an improvement. In this case, sincemost of the

total error variance is due to the random uncorrelated

errors (sq 5 1 and sc 5 0:5), superobservation is effec-

tive at filtering the random component of the error. To

show the sensitivity of these results to the true statistics,

each bottom panel includes an additional set of w1 re-

sults (lime) for l̂o 5 4 (left) and for ŝo
c 5 0:25 (right).

The pattern of optimal individual weights (Fig. 6)

warrants a brief discussion. In many optimal weight

patterns, when the errors are correlated, the outermost

locations are given the largest weights (for both the w2

and wn schemes). The reason for the emphasis on ob-

servations further from the center of the ONs is that in

the presence of correlations, the observations overall

must be downweighted, but the observations at the

domain edges are more valuable since at the edges

there are fewer observations (i.e., there is a lower ob-

servation density). This is also the case for observations

with systematic errors and odd ONs, but not for ob-

servations with systematic errors and hybrid ONs. The

examples shown in Fig. 6, which are for hybrid thinned

ONs, are otherwise representative of the types of be-

havior seen in other cases. In the top panel in Fig. 6 for

the nominal case with correlated observation errors

FIG. 6. The optimal weights wi as a function of observation location hi for representative

cases for different degrees (m, colors, as in earlier figures) and for different weight optimi-

zations (symbols and line types), for hybrid thinned ONs. The cases are for (top) correlated

errors (l̂o 5 8) and (bottom) observations with systematic errors (ŝo
c 5 0:50). Note different

ranges along the y axes.
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(l̂o 5 8) the optimal observation weight patterns os-

cillate with increasing amplitude as jhj increases, with
large edge weights and in the case of m5 1 and 3 zero

weights for some of the neighboring points. This pro-

vides an analog to thinning for m5 1 and 3 since the

oscillation has a spatial wavelength equal to the cor-

relation length scale. In the bottom panel in Fig. 6, for

observations with systematic errors (ŝo
c 5 0:50) the

optimal wn observation weight patterns are bent

downward in the center and have a wavy pattern for

increasing jhj. The edge weights are reduced in both the

w2 and wn solutions, except for m5 1.

The pattern of squared analysis error (i.e., DA, the di-

agonal of Â) as a function of h is flat except within ap-

proximately l̂o 5 8 of the domain edge (Fig. 7). This is

consistent with the fact that the background error is con-

stant (ŝo
r 5 1) and the observation density is regular, ex-

cept at the domain edge, where there is less information

added by the observations. Except near the domain edges,

the squared analysis error is virtually the same for all four

of the tuned and OA cases. The background and obser-

vation components of squared analysis error—Db
A and

Do
A—are also plotted in Fig. 7. At the domain edges, where

the observation density is lower, the background compo-

nent of squared analysis error (Db
A) is higher because there

are fewer observations to correct the background. Note

that for some of the weighted least squares solutions, the

observation component of squared analysis error (Do
A) is

lower at the domain edge when the edge location is not

used or its weight is not tuned.However, in these cases, the

impact of increasing Db
A dominates.

5. Discussion and concluding remarks

A variational analysis problem is defined and ana-

lyzed to explore the interaction of observation thinning

or superobservation with observation errors that are

correlated or systematic. The expected errors of the

variational analysis are determined under general con-

ditions, assuming only that the background and obser-

vation errors are independent. The general formulation

might be applied to arbitrary covariances, arbitrary ob-

servation operators, and arbitrary observation networks

(ONs). For example, by comparing the impact of dif-

ferent estimated background error covariances, it would

be possible to examine the impact of different imple-

mentations of covariance localization in ensemble data

assimilation (DA). In this study, examples are given

for a simplified analysis problem. In this problem, each

covariance matrix is parameterized in terms of two pa-

rameters, the observation error standard deviation

s and the observation error correlation length scale l.

(This can include uncorrelated errors, in which case

l5 0, and systematic errors, in which case l5‘.) Also,

only a regular 1DON is considered in which the analysis

variable and locations match the observation variable

and locations. Then, the data selection operator S and the

observation operator H are identical. In the discussion of

the examples, it is assumed that the observation (and

analysis) locations are separated by a fixed horizontal dis-

tance (25km). However, the results are directly applicable

to a vertical analysis problem with locations separated by a

fixed log of pressure, say for thinning or superobservation

of closely spaced temperatures retrieved from radiance or

FIG. 7. The total and component squared analysis errors (D5DA, D
b
A, D

o
A, line types) as

a function of observation location (hi) for degreem5 3 for the w1 thinned oddON and for the

w2 superobservation hybrid ON for the tuned and untuned weighted least squares solutions

and for the OA solutions (colors; see legend) for the nominal case.
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radio occultation observations. Given an appropriate ob-

servation operator, a similar analysis could be made for

thinning or superobservation of radiances or bending angle

observations in order to develop a strategy for the use of

such data in a full DA system.

In this study, different thinning and superobservation

methods are compared for varying degrees of thinning or

superobservation for cases in which the estimated error

characteristics are incorrect. First, for the full variational

analysis method, which includes an estimate of a full

observation error covariance matrix R, the analysis is

more sensitive to variations in the estimated background

and observation error standard deviations than in the

corresponding correlation length scales. Except for ex-

treme ONs, the impact of the ONs is small compared to

the impact of the estimated statistical parameters. Since

the superobservation ONs retain basically all the in-

formation in the original observations, as the degree of

thinning or superobservation (m) increases, the mean

square analysis error (MSE) increases more quickly for

the thinned ONs than for the superobservation ONs.

Even if the estimated statistics are correct in a global

sense, the true statistics will vary in space and time. In this

situation, the expected analysis error may be locally larger

or smaller than the global average, but it will always be

suboptimal. If everything else is fixed, the analysis error

increases with decreasing true background error correla-

tion length scale and with increasing true observation er-

ror correlation length scale. This is expected since as the

background degrees of freedom decrease with increasing

background correlation length scales, there is less in-

formation needed to correct the background and as the

observation degrees of freedom increase with decreasing

observation correlation length scales, there is more in-

formation available to correct the background.

For a variety of reasons, R is often assumed to be di-

agonal in practice. Then, in the case of correlated ob-

servation errors, thinning and/or superobservation and/or

tuning of the observation errors improve analysis results.

Therefore, in addition to results for the full variational

analysis method, results are also presented for a weighted

least squares analysis method in which R is diagonal. In

the weighted least squares analysis method, when theDA

system ignores correlations and systematic errors, it is

best to deweight the observations (i.e., tune the estimated

observation standard deviation) or to create super-

observations at the scale of the error correlation length

scale. (With superobservations, the observation standard

deviation of the original observations should be used

without an m21/2 adjustment.) For errors with no sys-

tematic component, as long as the weights have been

tuned, any of the ONs is adequate, and the tuned

weighted least squares solutions are nearly as good as the

optimal analysis (OA) solutions. When systematic errors

are added to uncorrelated errors, superobservation is

better than thinning, but tuning the weights adds little. In

this case, the OA solutions are a definite improvement,

which suggests adding another parameter to the weighted

least squares analysis method to estimate the systematic

error in what Dee (2005) terms a ‘‘bias aware’’ approach.

In the weighted least squares approach, the optimal

configuration will also vary if the true error correlation

length scales vary from sample to sample.

Two sets of ONs were examined that differ only in

whether locations at the edge of the domain are included

(hybrid ONs) or not (odd ONs). Differences inMSE are

small between matching hybrid and odd ONs, with

slightly smaller errors for the hybrid ONs since two

additional observations are used and the range of ob-

servation locations is increased. Tuning of the observa-

tion weights illustrates the fact that within the weighted

least squares context, when errors are correlated, the

value of a particular observation depends on the loca-

tion of the neighboring observations. Isolated observa-

tions or observations in regions of reduced data density

have more impact on the analysis. The tuning gives in-

creased weight to such observations.

Within the context of standard DA theory, it is often

stressed how critical it is to properly characterize the

observation errors, correct systematic errors, and esti-

mate and use observation error correlations. As dis-

cussed in the introduction, this is difficult in practice

because 1) limited samples of observations are available,

2) the correlations and systematic errors may vary with

the particular batch of data, and 3) differences available

for analysis combine multiple error sources. For example,

for radiance observations, ignoring or mischaracterizing

aerosols may induce systematic and/or correlated errors,

and aerosols vary temporally and spatially on scales

of interest.

The examples presented in this study demonstrate

some of the complexity of optimizing a data analysis even

for a very simple system. What can be done? In the near

term, adaptive methods as described in the literature and

cited in the introduction, hold some promise for en-

hancing analyses by sensibly retaining more observations

as the feature length scales decrease. Various schemes to

remove biases and systematic errors can be applied (e.g.,

Dee and da Silva 1998). And dense datasets can be pre-

processed to more manageable sizes using smoothing

splines or other interpolative techniques. Beyond stan-

dard DA practice, in the future artificial intelligence (AI)

techniques based on deep learning (multilevel neural

networks) might be trained on ‘‘big’’ data (initially sim-

ulated data) to produce analyses that are more nearly

optimal for every case likely to occur in reality.
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APPENDIX

Derivation and Discussion of Variational Analysis
Expected Errors

The analysis xa occurs when ›J/›x is zero; that is, when

B21 dx5HTR21 dy . (A1)

In what follows, we solve for the analysis error, but note

that solving Eq. (A1) for the analysis using Eq. (2) gives

the Kalman filter update equation:

dx5K
�
yo 2H (xb)

�
, (A2)

where K is defined below in Eq. (A8).

Now, the truth at the observation locations is given by

yt 5H (xb)1H(xt 2 xb)1 eH , (A3)

where eH is the combined errors of the observation

operator (aka, forward problem) and its lineariza-

tion. The truth in the DA context does not include so-

called representativeness errors, which are the small

scales that cannot be represented by the analysis.

Using Eq. (A3),

dx5 xa 2 xb 5 (xa 2 xt)2(xb 2 xt)5 ea 2 eb ,

dy5 yo 2
�
H (xb)1H(xa 2 xb)

�
,

5 [(yo 2 yt)1 eH]2H(xa 2 xt)5 eo 2H ea .

(A4)

Note that the observation error eo combines instrument

and representativeness errors from the term yo 2 yt and

simulation errors from the term eH . Substitute Eq. (A4)

into Eq. (A1) and rearrange to obtain

A21 ea 5B21 eb 1HTR21 eo , (A5)

where

A5 (B21 1HTR21H)21 (A6)

is a symmetricmatrix. Aswill be shown,A is the estimate

of the analysis error covariance when the specified

background and observation covariances are correct.

Equation (A5) may be written as

ea 5G eb 1K eo , (A7)

where

K5AHTR21

5 (B21 1HTR21H)21HTR21

5BHT(R1HBHT)21 ,

(A8)

and

G5AB21 5 I2KH . (A9)

The second form of K is the variational formulation, and

the third is the optimal interpolation (OI) formulation.

The equivalence of these two forms follows as a variant of

the Woodbury matrix identity [see Kalnay (2002), Eq.

(5.5.11)]. TheWoodbury identitymay also be used to show

that AB21 5G.A1 According to Eq. (A7), the analysis er-

ror is partly due to the background error and partly due to

the observation error. The first term is the background

error updated by the Kalman filter covariance update

matrix (G5 I2KH). The second term is the observation

error filtered by the Kalman filter gain matrix K.

To obtain an expression for the true analysis error

covariance Â5 hea eaTi, multiply Eq. (A7) by its trans-

pose, take the expectation, and assume that eo and eb are

independent in the sense that heoebTi vanishes. Then,

hea eaTi5Gheb ebTiGT 1Kheo eoTiKT (A10)

or

Â5GB̂GT 1KR̂KT 5 Âb 1 Âo , (A11)

which is Eq. (3).

In the special case thatR5 R̂ andB5 B̂, the entire first

r.h.s. of Eq. (A11) reduces toA and therefore Â5A.A2 In

other words A is the equal to the true analysis error co-

variance when the estimated background and observation

error covariances are correctly specified.

Once Â is determined from Eq. (A11), its diagonal

contains the estimated squared analysis error at the

analysis locations:

D
A
5 diag(Â)5diag(Âb)1 diag(Âo)5Db

A 1Do
A .

(A12)

A1Applying the Woodbury identity to A gives A5 (B21 1

HTR21H)215B2BHT(R1HBHT)21HB. Thus,AB215 I2BHT(R1

HBHT)21H5 I2KH5G.
A2 Replace G and K in Eq. (A11) with their original definitions

AB21 and AHTR21 to obtain Â5A(B21B̂B21 1 HTR21R̂R21H)A,

which, in the special case that R5 R̂ and B5 B̂, becomes Â5

A(B21 1HTR21H)A5AA21A5A.
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Here, Db
A and Do

A will be termed the background and

observation squared analysis error, respectively. The

mean square estimated analysis error and its compo-

nents are similarly defined by Eq. (6) in terms of the

trace of Â.
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